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Abstract 

Results and analyses of computer simulations of the beam-beam interaction 

in the "Tevatron" cp collider are presented. Long time simulations of this 

nonlinear two dimensional (2-D) interaction are undertaken in a search for 

beam blow-up due to "Arnol'd Diffusion". No large blow-up is seen in simula- 

tion of 20 minutes Tevatron time (60 million turns). Limits on the possible 

magnitudes of emittance increase are presented. 
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Introduction 

In the Fermilab "Tevatron I" project, it is planned that 

bunches of protons and antiprotons will collide in the 1000 GeV 

superconducting ring, providing high energy particle-antiparticle 

collisions. When bunches cross each other, single particles are 

affected by highly non-linear forces generated by the beam bunch 

moving in the opposite direction.' 

It has been suggested that such motion could be unstable. 

The motion of a particle with a periodic, non-linear, two-dimen- 

sional (2-D) kick could diverge because of an instability process 

called "Arnold Diffusion". This phenomenon can occur in the ab- 

sence of external noise and requires at least two degrees of free- 

dom.' 

Arnold Diffusion is a slow process, with a rate depending 

upon the linear beam-beam tune shift Av, but still possibly ser- 

ious enough, where it exists, to remove particles from the anti-, 

proton (p) beam in a time period shorter than the required c stor- 

age time. This effect could endanger the Tevatron I project. 

The theory of "Arnold Diffusion" is incomplete. Arnold 

has demonstrated that a particular nonlinear, 2-D, time dependent 

dynamical system has an instrinsic instability dependent on the 

strength of the nonlinearity.3 The instability causes particle 

orbits to wander throughout phase space. An hypothesis exists 

that any 2-D, nonlinear, time dependent, hamiltonian system should 

exhibit "Arnold Diffusion". This hypothesis has n~ot yet been proven. 
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The beam-beam interaction is such a system and therefore 

could exhibit this instability. We have undertaken long-time 

computer simulations to find evidence for Arnold Diffusion in 

the beam-beam interaction. We have simulated up to 20 minutes 

of real Tevatron time (60 million turns) and see no significant 

evidence of such instability; the motion is stable on that time 

scale. 

The simulations have been performed by use of the Fermilab 

Cyber computing system with a program originally prepared by 

Ruggiero4 and modified by Riddiford. In the following sections we 

outline the characteristics and the results of these simulations. 

Equations of Motion 

We consider here only the "weak-strong" case where a test 

particle in a "weak" beam periodically crosses a "strong" beam. 

The motion of the particles in the strong beam is not affected 

by the presence of the weak beam, therefore their charge distri- 

bution can be assumed to be constant in time. 

The equations of motion of the test particle are 

x ” + Xx(s) x = -% F(x,y) 6p(s) x 
B,* (1) 

Y" + /(S) Y = -4;Avy F(x,y) 6p(S) y 

BY 
where x and y are the displacements of the particle motion from 

a reference orbit (x,y=O), Kx and K 
Y 

are the lattice focussing 

functions and t/he right hand sides of equations(l) represent the 

interaction with the strong beam where 6 
P 

is a periodic delta- 

function of period C. 
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Equations (1) do indeed describe the motion of a particle 

in the proton-antiproton colliding. beam system at Fermilab, if 

the following assumptions be taken: 

(i). The two unperturbed betatron tune vx and v do not 
Y 

depend on the particle momentum. This requires chromaticity 

cancellation in both planes over a reasonable momentum range. 

(ii). The lattice parameters at crossing (a *, B*, y*) do 

not depend on the particle momentum over some appreciable range. 

This might require even higher order corrections than those re- 

quired to flatten the chromaticity. 

(iii). ~The disperson at the crossing point vanishes over 

the same momentum range. There is no constraint on the deriva- 

tive of the dispersion, however. 

(iv). Both beams are bunched and the interaction is head- 

on. 

(v) . The bunch length in the strong beam is small compared 
* 

to B . In this case it is possible to represent the interaction 

by a lumped kick; that is, the interaction has infinitesimally 

small duration which justifies the periodic delta-function at the 

right hand side of equations(l). 

With these assumptions, which approximate physically prac- 

tical conditions, the interaction between the two beams is inde- 

pendent of the particle momentum and therefore of synchrotron 

oscillations. In this case one only requires the integration of 

equations (1) to calculate the motion of a test particle in the 

"weak" beam. 
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Our approach is static: that is, we are neglecting all 

sources of noise which would cause the interaction to fluctuate 

(gas scattering,intrabea scattering, power supply noise, quantum 

fluctuations, etc.). 

The proton beam is assumed to have a round, gaussian shape, 

providing a non-linear force represented by the function 

F(z) = (1. - DEXP(-z))/z (2) 

with 

z = 75. (x2+ y2, (3) 

where x is the horizontal co-ordinate of an antiproton and y the 

vertical co-ordinate, with the co-ordinates centered upon the pro- 

ton beam, and where the units are millimeters. 

The root-mean-square size of the proton beam can be found 

from (3); 75. = l./ (20~); so that o= 0.08165 mm. 

It has been proven that if CY~ = a* Y 
and V = v x y and F(x,y) 

has a symmetry property (See Appendix A)) equations (1) can 

be integrated once, which reduces the number of degrees of freedom 

from two to one. According to the KAM theorem,5 if there be only 

one degree of freedom and the nonlinearity be small enough, the 

non-linear system cannot be unstable. 

The Tevatron I parameters are well described by equations (1) 

and the above restrictions, except that V x need not equal V Y' (Equa- 

tions (1) have not been shown to be integrable if vx # Vy.) 

Our computer simulations contain two 20 minute real time (60 

million turns) Tevatron simulations: one with vx = v Y which meets 

the integrability conditions, the other with vx # V Y' 
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Computer Simulation Technique 

A set of test particles (usually 100) are generated with 

initial co-ordinates: positions (zC,y) and velocities (x',y'), 

generated randomly following gaussian distributions in each. 

Those distributions are centered at x=y=x'=y'=O with dimensions 

matching the "strong" beam. During generation of initial co- 

ordinates, co-ordinate sets with a co-ordinate larger than three 

gaussian standard deviations are rejected and new ones generated. 

Since there is a "waist" at the interaction region (ax=ol 
Y 

=O) , 

the particle "emittances" are 
2 

E X 

X =7 
% 

+ 8; (XV2 
(4) 

2 

Ey B 
=G 0, * (Y'12 

Y 

In these simulations we have chosen ~~~~~ = ~~~~~ and 

8; = 8; , which is equivalent to the condition that both strong 

and weak beams are "round", as should be true for Tevatron I. 

Only one interaction per turn (revolution) is calculated. 

The simulations have two steps per turn: 

1) a linear transformation around the ring; 

2) a non-linear kick due to a "beam-beam" interaction. 

The linear transformation is modified to include the 

linear part of the beam-beam interaction. The kicks in the anti- 

proton velocities are found from: 
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*x*=- g&! F .~ x 

4TAV 
AY’=- BTy F,~ 

where F +l for small amplitudes x,y and where BTX and BTY are 

the "before" betas explained below (in the limit Av -f 0). 

Figure 0. Symmetric Velocity Kicks. 

The initial distributions of position and velocity were 

taken at A. The first velocity kick was one-half the strength 

given in (4A), and thereafter, when statistics were done on the 

positions and velocities, one-half of (4A) was subtracted from the 

velocities, since (4A) takes the antiproton from C to B. 

Taking K = - 4 nAv/Bas the velocity kick for either x or y 

in (4A), K/2 is applied at the beginning of each turn and K/2 at 

the end, so (for each plane): 

BEFORE 

( 

1 0 c + cis Bs 10 

; l )( > 
K 
T l 

= 
- YS c - as 

c + as+;Bs 6s c’ + a’s’ B’S’ 
= (5) 

. . . . c - c1.5 + ; 6.5 - y’s’ c’ - cI’s’ 
> 

AFTER 
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where the symbols c and s stand for cos (2~) and sin (2mJ) and where 

the unprimed quantities are considered before interaction 

and the primed quantities after. (We use the linear approxima- 

tion that F = 1.1 We desire that the,tune of the "after" matrix 

be matched to the nominal value v. = v' and that 8' ("after") 

be set to the nominal matched value of 2 meters. 

The "before" matrix parameters v, B, a are found by solving 

the equations 

a= gl =o 

cos(Znv) + ij Bsin (2nv) = cos(2av0) (6) 

@sin (2nv) = B'sin (2nvs) 

with separate equations for x and y, where Bi = B; is taken but 

v; #v' 
Y 

is allowed. With this transformation, the "linear part" 

of the motion, the motion for small x, is matched to the linear 

component of the strong beam. With double precision the deter- 

minant of the "before" matrix is within 10 -28 of unity, indicating 

that the system is conservative for 1slpJ turns. 

Calculation of the Interaction Form 

A. Single precision. 

A great deal of computer time can be saved by tabulating 
I 

interpolation coefficients of the function (2) in one operation 

at the start of the run. The computer program evaluates F accord- 

ing to 
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gi (t) o<z _ < 30 
F(z) = 

l/z 30 < z (7) 

where t = z - z i, zi = (i-1)Az defines 12,000 intervals of 

length Az = 0.0025 and where the l/z approximation is adequate to 

13 significant digits. 

The functions 

gi(t) = a i + bit + cit2 + dit3 

are cubic interpolations whose coefficients a i' bi' Ci, di for each 

interval are determined by requiring: 

1. gi(0) = F(zi) 

2. gi(Az) = F(zi + AZ) 

3. $ gi(Az/2) = & F(zi + AZ/~) 

4. F(zi ' P) - gi(P) = - F(zi + AZ/~) - gi(Az/2)) 

k where p = loo AZ. 

All integer values of k from 10 to 40 were tested and k = 35 

was chosen which gives the smallest maximum error and with posi- 

tive and negative errors balanced. The top graph in Figure 1 shows 

that the approximation is always correct to 12 decimal digits, and 

to 13 for z greater than about 2. 

A computer program evaluating F as in (7) and (8) takes only a- 

bout 62% of the time that evaluating the function F(z) = (1 -EX~P(~-Z))/Z 

takes while giving the same accuracy as the single precision function. 
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B. Double precision. 

For double precision calculations the above interpolation 

procedure is not adequate. For z > 0.05 the function F(z) = 

(1 - EXP(-z))/z is calculated directly using double precision 

operations, functions and constants. For z CO.05 a thirteenth 

order polynominal is used. This obtains F to 28 significant 

digits. 

Repeatability Experiment (Double Precision). 

To estimate the accuracy of anti-proton orbits, four parti- 

cles (X, = Y = + 5, 0, g or 2u; X' = Y' = 0; 0 = 0.08165mm) are 

simulated on the computer 60 million turns forward and then re- 

turned back to their initial starting positions. This requires 9 

hours total CPU time. Since anti-protons in the "Doublei'complete 

50,000 turns each second, 60 million turns is equivalent to 20 

minutes real-ring-time. The computer is less efficient with only 

four particles, and so the CPU time is 3.2 times the real ring time 

per particle. 

Since a*, = cd* 
Y 

= 0, the reverse run only needs to change the 

signs of the off diagonal elements (5) and the function F (see (1) 

and (2)). During the reverse run, positions and velocities are com- 

pared with the forward run values. Since 19 + 6(X') 2 B is invariant 

in a linear orbit, the error is estimated by finding the base 10 

log of where AX and AX' are the differences in 

X and X' between the forward and backward runs. Since X = Y, only 

X values are shown in Figure 1A. Orbit positions should be reliable 

to 14 decimals. 
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This test guarantees the accuracy of our computer simula- 

tion for at least 40 minutes real time in beam-beam, storage ring 

situations. 

Cases Bun; Double Precision 

Since we want to explore the long-time stability of a storage 

ring containing both protons and antiprotons, we choose two regions 

of tune space where there are large resonances which could be ex- 

pected to enhance instabilities: 

Case A: vx = v = 0.245 
Y I Avx = Av 

Y 
= 0.01 on-diagonal resonance 

(10) 
Case B: vx = 0.245 

vY 
= 0.12 , Avx = Au 

Y 
= 0.01 off-diagonal 

resonance 

Emittance statistic calculations are made after the odd-thousands 

of turns (1000, 3000, 5000, . . . ) in groups of 200,000 turns and 

supergroups of 10 groups. Thirty supergroups were run for a total 

of 60 million turns or 20 minutes real-ring-time. The 60 million 

turns required a little under 90 CPU hours. 100 antiproton orbits 

were calculated, so these runs (2.64 CPU seconds/real-ring- second 

for each particle) were more efficient than the repeatability runs 

(3.2 CPU seconds/real ring-second for each particle). 

For example, Figure 2 shows emittance statistics for a 64 

second simulation oh the l/4 resonance. Each bar summarizes 100 

emittance values calculated over 200,000 turns (4 sec.). The top of 

the bar is the maximum value, the bottom is the minimum value. The 

line near the center is the best straight line fit to the 100 values. 

The line across the 16 bars is the best straight line fit for the 

full 64 sec. run. 
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Figures 3 and 4 contrast the statistics of rms beam emit- 

tances with resonance ( vx = v Y = 0.245) and with a l/6 resonance 

(v =v x Y 
= 0.162), in 12 second, single precision simulations. 

XNIT, YMIT (x and y emittances) and 

are compared. 

RMIT = (11) 

In Figure 4 we see XJ5IT and YMIT vary oppositely and their 

rms sum RMIT remains nearly constant. Figure 3 shows much larger 

fluctuations, particularly in RMIT. We believe that to be due 

to the large distortions in particle trajectories due to the l/4 

resonance. 

Also, in Figure 2, we notice an irmnediate increase in emit- 

tance from an initial value of 0.0172 mm-mrad to 0.0237 mm-mrad 

in less than 1000 turns. This "increase" is believed to be caused 

by a non-linear mismatch. As explained above, v and B are adjusted 

to match vanishing-amplitude orbits and initial particles are 

placed within a gaussian distribution appropriate for a linear force. 

Large amplitude orbits are unmatched, and this mismatch of resonant 

orbits generates the initial change in emittance. 
I 

Fluctuations in emittance are partially due to statistical 

fluctuations (only 100 particle orbits) and these statistical fluctua- 

tions are enhanced by the large variations in orbits near resonance. 

We observe that the calculated emittance presented above, 

YMIT = 6 (y - Y12 (y' - Ygj2 (12) 
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is equivalent to the "95%" emittance of a bigaussian distribution 

E95 
=‘j$ (13) 

where u is the rms beam height, and 6* the "beta-function" at 

the interaction point. 

CaseA: vx=v 
Y 

= 0.245, Au = 0.010. 

Table I gives the emittance data after every two million 

turns up to 60 million turns or 20 minutes real-ring-time. After 

the first row, the values are cumulative, incorporating all the 

previous data (details are given in Appendix B). 

Figure 5 displays the 30 average values for WIT, each one 

the average of 1000 emittance values during 2 million turns. The 

last value for R in Table I is shown on Figure 5 as the horizontal 

dashed line. 

Figure 6 shows the cumulative estimates of the time in days 

that it would take to change the R emittance by a factor of two. 

These values are inversely proportional to the cumulative slope 

estimates of the best straight line fit from t = 0. After the 

computer run is past 10 minutes real-ring-time (30 million turns) 

the estimates are all more that 20 days for the RMIT value to de- 
, 

crease to zero. 

Figure 7 shows the area of tune of the l/4 resonance runs. 

All lines of the form mx + ny = q where m,n,q are integers and 

where the order ( Irnl + In/ ) is less than or equal to 13 which 

cross the area are shown. Other than the 2nd order line vy=vx, 
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there are five 4 th th order lines, two 6 th order lines, six 8 

order lines, four 10 th th order lines-and ten 12 order lines. 

Case B: vx = 0.245, v = 0.12, Av = 0.01. 
Y 

Table II gives the emittance data at intervals of two 

million turns, similar to Table I. The bottom two graphs of 

Figure 8 display the 30 average values of the x-emittance (XMIT) 

and y-emittance (YMIT), each one the average of 1000 emittance 

values during the two million turns. Straight line fits to the 

data are shown. The top graph of Figure 8 gives the ratio of 

cumulative slopes of the x-emittance divided by the y-emittance 
dex 

/ 
d&Y which is equivalent to dt dt . The appearance of an increase 

in E matched by a decrease in E x suggests some resonance influence Y 
which we have not been able to identify precisely. 

In Figure 9 the region of tune (0.245 z vx< 0.255, 0.12 < 

< 0.13) for Case B is shown. 
vY - All resonant lines of order less 

than 13 are shown. There are single 3 rd , 4th, 5th and 6th order 

resonances, two 7 th order resonances, single 8 th , gth and 10th 
order resonances, three 11 th order resonances and three 13 th 

order resonances. Particle orbits with small amplitudes are con- 

centrated near v = 0.255, vy = 0.13. Larger amplitude orbits are 
X 

at lower tune value/s concentrated near the diagonal Avx = Av 
Y' 

Figure 10 shows the cumulative estimates of the time in days 

that it would take to change the x-, y- and R-emittances by a factor 

of two, found from the inverse of the slopes. After about 12 minutes 

real-ring-time simulation, the slopes indicate a doubling time of 
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greater than two days. The y-emittance shows a negative "doub- 

ling time" ind'icating a decreasing emittance. This value of 

doubling time for this case is an order of magnitude smaller than 

in the previous case of a resonance on the "diagonal" ( v 
X 

= vy). 

This suggests that Case A is more stable than Case B. 

Single Precision Runs 

The same cases (A and B) were also run in single precision 

simulations, where ten supergroups are needed to complete the 60 

million turns or 20 minutes real-ring-time. Each supergroup is 

6 million turns or 30 groups of 200,000 turns. Each supergroup 

ran a little over two CPU hours, so that the complete run required 

almost 22 hours. 

The matrix calculations take about l/3 of the CPU time, the 

other 2/3 being required by the cubic interpolation of the inter- 

action function F. Quadratic or even linear approximations can be 

used and will speed up the runs, but accuracy will suffer and the 

number of intervals required will increase. 

Figure 11 explains why we went to double precision. The re- 

peatability experiment (similar to Figure 1 for double precision) 

showed errors in the orbit positions comparable with the positions 

themselves after 20'million turns. 

Table III compares the single precision results with the 

double precision results. The Case B run was stopped .at 30 million 

turns (10 minutes real-ring-time). 
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The statistics used for single precision runs were dif- 

ferent from that explained above for the double precision runs, 

so the doubling times do not use the same data, and so should not 

be precisely the same. In single precision runs emittance values 

were taken at the even thousands (0, 2000, 4000, . ..) which meant 

counting the emittance at the end of each group twice. 

After each of the 30 double precision supergroups, a com- 

parison was made of ten x-values and ten y-values with the single 

precision values. On the average the case A run differed by more 

than 1 in the 5 th decimal at two million turns and in the 3rd 

decimal at 60 million turns. The Case B run was only slightly 

worse. 

Both single and double precision cases yield the same rate 

of change for Case A and the same magnitude of change for Case B. 

Conclusion 

We have made two long-run simulations of the beam-beam in- 

teraction for a geometry which we believe to be a good approxima- 

tion of Tevatron Ep colliding beams. 

In Case A ( vx = v 
Y 

= 0.245) we find stability. Our result is 

that it requires -20 days for the beam emittance to double 

and this result is /consistent with the theorem on integrability of 

this system (Appendix A). 

In Case B ( vx # vy) we find that the weak emittance can 

change by a factor of two in two days and this result is statisti- 
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tally significant (Appendix C). This may be "Arnold Diffusion", 

but it is a small effect for Gp parameters. 

We plan to extend these runs to 120 to 200 million turns 

(40 to 60 minutes real-ring-time) to set further limits on "Arnold 

Diffusion". We also hope to explore other beam-beam geometries, 

such as collisions of elliptical rather than circular beams, and 
also the effects of "tune modulation". 
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Appendix A. Integrability Theorem 

Let us write the equations of motion (1) in the form: 

x" + kx(s) x = SxFx(x,y)Gp(s) (1A) 

y" + kyW y = SyFy(~,y)$,(~) 

Theorem: If the following conditions be satisfied: 

” = v and a* = a* 
X Y X Y (2A) 

then there exists an infinite variety of strong beam charge distri- 

butions for which the original equations of motion (1A) admit at 

least one integral of motion. 

Proof: The interaction force can be derived from a potential func- 

tion: 

au 5xFx(x,~) = - z and au SyFy(x,y) = - F (3A) 

The pair of equations (1A) can then be obtained from the following 

hamiltonian: 

H= 
p; + p2 kxx2 

2 + 
f kyy2 
2 + U(X,Y)GpW 

This is a non-autonomous system with two degrees of freedom. 

The independent variable is s; the canonically conjugate variables 

are: 

x, p, = x' and YI Py = Y' (5A1 

According to Maxwell's equations, the potential U is related 

to the charge distribution p(x,y) in the strong beam by the Poisson's 

equation: 

V2U(X,Y) = P(X,Y) (6~) 

Let px = 27rvx and u = 2av 
Y Y 

be the betatron phase advances in 

the two planes between two consecutive crossings. Whether there be 
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only one or more than one interaction per revolution is immaterial 

here,provided that the lattice repeats identically between crossings. 

It is well known that in the limit 5, = 5, = 0 the position 

and angle of the test particle after the n-th crossings are given by: 

xn =~~cos(wx + 6x) 

x; =- 
r1 

2 
x 

a; cos(npx + 6x) + sin(nnx + Ax) 
I 

(7A) 

and similarly for y, and y;. In equations (7A) Ed and Ax are two 

constants of motion. The first one measures the amplitude of the 

motion. 

Let us make the following change of variables: 

b,x’:y,y’) (rtprie,pe) 

old new 

with 

cos e and Y= sin 0 

The generating function for this transformation is: 

s(err;PxpPy), = (w, + YP,i 

= XI~TCOS e + y'dvin e 

from which we derive the new momenta: 

as 
Pe = -TiF and P, = g 

(8~) 

(9A) 

(lOA) 

(1lA) 

pe is similar to angular momentum: 
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PO = x*- sin 0 - y'$T$ cos 8 

(12A) 

=j/fxly -q$- y’x 

We calculate p8 at the interaction point after n crossings 

in the limit 5, = 5, = 0. Inserting (7A) and similar equations 

for Y,Y' into (12A) we obtain 

Pen =dKsin (6y - 6x) 

which is a constant, an invariant of motion. 

Let us see now the effect of the kick with 5, and 5 * # 0: 

Ax, = 0 Ay, = 0 

Ax; = SxFx(xn,yn) AY; = SyFy (x,, y,) 

We have: Apen ==@ y,Ax; -4 xnAy; 

= 
YnSxFx(XnrYn) - 

Y 
Xn yFy(~nr~n) 

= - d- 2 Y, 
au 

r 
.!G 

(dn + B,: x (au, n ax n 

After the transformation (9A) is applied: 

U = U(x,y) + U(r,t3) 

It is obvious that if au/se = 0, i.e. the potential depends only 

on the "radial" coordinate r, 

(13A) 
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au --=2~du du ar 
Tic= dr ax 6; dr 

au dU ar Y dU -.M=--=2T- 
ay dr ay By dr 

then Apen = 0, that is pe remains a constant of motion with the 

beam-beam interaction. 

From (9A) we obtain: 
2 

r=X+ 
B” X Y 

If U be a function of only this variable, then we have from 

(6A) that all charge distributions satisfying the equation 

2 
P(X,Y) = 4(@ 

2 d2U 
+ &-d- 

y dr2 
+ 2(1+ 1, SE 

B* x B* dr 
Y 

(14A) 

with any arbitrary U=U(r), satisfy also the requirements of the 

theorem. 

In particular if B; = B* and the strong beam is "round", as 
Y 

is approximately true for the PC-project at Fermilab,~then a 

qaussian charge distribution in the strong beam is consistent with 

the assumptions and the theorem. 

Discussion / 

As we have already mentioned, equations (1A) represent a system 

with two non-autonomous degrees of freedom. This has been conjec- 

tured to be a sufficient and necessary condition for the system to 

be affected by Arnold diffusion: an instability caused by the 

intersection (not over-lapping) of the non-linear resonances in 

the four-dimensional phase space. 
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Bet we have just proven with the previous theorem that if 

the conditions (2A) and (14A) are satisfied, the system can admit 

one integral of motion, p8 given by equation (12A). Therefore 

equations (1A) can be integrated at least once. One can eliminate 

8 as a variable, and the motion of the test particle can be re- 

duced to one degree of freedom. In this case the KAM theorem5 

insures that for small values of the perturbation (6, and c,) 

the motion is bounded by stable trajectories. 

In this case (pg=constant), the resonances in the four dimen- 

sional phase space never intersect with each other. The question 

remains whether this is generally true or requires conditions (2A) 

and (14A). If this be true, then the beam-beam interaction 

cannot exhibit Arnold diffusion. 
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Appendix 5. Best Straight Line Fit of' Emittance Values 

In this section we describe our method of calculating the slope 

from our sets of emittance values. 

As shown in the "BAR" part of Figure 12, 100 emittance values 

are taken at the odd thousands of turns (100, 300, . . . . 199,000). 

The SLOPE is found from 
SLOPE = zxy - (.hl~CQ) 

Ex2- (Exl 2 
(1s) 

Scaling each bar to Oati, SL, defined in Figure 12, was found 

from: 

100,000 SLOPE = SL/2 = DY (2B) 

To find the best straight line fit to the ten (N=lO) "BARS" 

making up a "GROUP" (see Figure 12) 

x=;2 i 
_ + + j ;,;.5 j=1,2,...,100 

y = yi + SLi (-% + j - 0.51 (3B) 
100 

and the overall AY, always using a zero x-average was found from 

(4B) 

where the numerator/is made up of N sums like: 

1 100 
-1 (j;.-'r+*'[si+sLi(-4+*)] 
loo j=l ' 

and the denominator sums all the points: 

Since: 

1 1OON 
& c x2 = - 

100 j:l 
(-; + j - 0.5~2 

100 

k 
Ci = %k (k + i) 
1 

(5B) 

(6B) 

(7B) 

(DB) Fi2 
1 

= 2 b + k (3 + 2k)] 
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(5B) becomes: 

(X 1 - - i 2 

+ - 
[ 

1 xi - T - 6 + yi + SLi (-$- A, s 

+ sL, (1 + 100 . 203) 
1 100 . 100 . 6 

i 

The sum (6B) becomes: 

- j + 0.25 lo4 1 

N3 N2 N =-+- + N - - 4 200 
4 

lo4 (100 + 
. 

1) lo4 E 2 (lOON + 1) 

+ N(l + lOON (3 + 200&I)) = CN3 _ N . lo-4j,12 
6 * lo4 

(9B) 

(10B) 

The quantity AY in (4B) becomes: 
N 
C (yi - iii + 0.16665 . lo5 

Ay = i=l 
. SLOPEi) 

(N2 - 10-4)/6 
(11B) 

The superqroup,calculations are very similar, except the sums 

are over 1000 values instead of 100. The slope SLi in (3B) is 

replaced by AY/(1/2)=2AY so that: 

x = xB. - $ + 7 - '-' 
1 1000 j = 1,2,...,1000 

y = yBi + 2AYi (-+ + j - 0.5) 
1000 (12B) 

The supergroup slope can be found from: 
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L 
z 

6y = i=l 
! Yi * iii + 0.1666665 * AYi) 

Yi CL2 - lO+j)/6 
(13B) 

To find the doubling time YMIFJ, the supergroup slope is found 

by dividing &Y by the number of minutes in L/2 groups. Since each 

group is 2/3 minutes, the doubling time is found from: 

or 

'AV !lIN 

‘MIN = 

YAV * L 
3 -~ 6Y 

(14B) 

(15B) 
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Appendix C. The Statistical Significance of the Calculated Slopes 

P.R. Bevington6 gives an estimate for the error in the slope 

(2B) to be: 

2 N s 2 
ub = NIxi - (Cxij2 

(lC1 

where: 

2= 1 ’ (Yi 
'2 

N-2 - a - bxi) (2Cl 

Emittance values were printed, and to do the sum in (2C) in- 

cluding all 30,000 emittance values would require days of keypunching. 

The above expression for cb can be shown to scale as 

'b = l/r% (3C) 

as the number of points (xi,yi) is increased, if the yi follow a 

normal distribution about the linear fit. We can find the error 

for a subset of the 30,000 values and scale to find the error for 

the full set. In order to check this scaling, 3000 values of RMIT 

(Case A) were keypunched (at turns 9000: 29,000; 49,000;...59,969,000: 

59,989,OOO) and cb was found to be: 
I 

cb = 4.49 x 10s6 mmGrad (,3000 data points, (4C) 
P.MIT, Case.A) 

Then every tenth value was used for a series of ten sums (1C) 

and (2C) using only 300 values, starting with the 1st value, then 

for the next set starting with the 2nd value, then 3rd,...lOth 

value. The average of the ten estimates of DS using only 300 points 

was : 
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'b = 1.42 x lo-' min -' (~average of 10 sets of 300 data (5C) 
points, WIT, Case A) 

To check the scaling (3C1, multiply (4C) by &?i: 

/i-f? x 4.49 x lo+ = 1.42 x 1O-5 ?;TLad (CC) 

The estimate for the slope error cb using all 30,000 emittance 

values is therefore 

4.49 x lO-6/JIis. = 1.42 x lo+ =-my?=" (~30,090.data (7C) 
points, RMIT, 
Case A) 

Any slope within the band +(7C) is expected to be statistically 

indistinguishable from a zero shape. 

In order to compare (7Cl with the doubling time of -54 days 

on Table I after 60 million turns: 

R av = 1.42 x lO-6 At (8’2) 

At = 0.0336/1.42 x lo+ = 23662 min or 
16.4 days (9C) 

Any doubling time longer than 16.4 days is expected to be statistic- 

ally indistinguishable from an infinite doubling time (or a zero 

slope). 
I 

Since 54 days is almost four times longer than 16.4 days, our 

data for R-emittance (Case A) is statistically indistinguishable 

from a zero slope. 

For Case B the numbers were: 
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Table II 
ub C300 values) cb /30000 values) Doubling 

mm-mrad/min mm-mrad/min At Time 

X 1.319x1o-5 1.319x1o-6 12 days 1.3 days 

Y 4.605~10-~ 4.605~10-~ 29 days -5.4 days (1OC) 

R 1.o49x1o-5 1.o49x1o-6 20 days 2.7 days 

The doubling times on Table II after 60 million turns are all from 

5 to 9 times shorter than the fAt band. 

So our data on Table II show (statistically) significantly 

non-zero slopes. 

As further runs are made, all emittance values will be made a- 

vailable for a more accurate estimate of CI b in (1C) and (2C). 
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TABLE 1. Enittmce dats for &se AJ vu q ‘/, = 0.245; A+= 0.010 

cumul3tive vslues. 
,A , 

Mllion 
turns X 

aV 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

33 
32 
3 
36 
38 

.40 
42 
44 
46 
43 

YJ 
52 
9 
55 
9 
60 

0.0237166 
0.0237070 
0.023.59a4 
0.0237l49 
0.0237005 
0.0237i04 
O.O237C@+ 
0.0237062 
0.0237050 
0.0237085 
0.0236997 
0.0237051 
0.0237059 
0.0237055 
0.0237051 
0.023709 
O.Q237026 
0.023703CI 
0.0237054 

Doubling 
The 

(dJ?+Y.ys) 
0.3 
1.6 

-0.8 
0.8 

-2.0 
2.2 

-12. 
28. 

-2-l. 

6.3 

-3.5 
-170. 

30. 
92. 

-39. 
42. 

-13: 
-18. 

5% 
0.0237024 ' -16. 
0.0237038 -9. 
0.0237033 -36. 
0.0237033 42. 
0.0237014 -17. 
0.0237034 -83. 
0.0237011 -17. 
0.0237035 -200. 
0.0237025 45. 
0.0237020 -33. 
0.0237020 -3a. 

Y 
9V 

0.0236305 
0.0235929 
0.0236972 
0.0236935 
0.0237146 

0.0237039 
0.023705l 
0.0237028 

0.0237059 
0.0237017 
0.0237084 
0.0237027 
0.0237036 
0.0237060 
0.0237034 
0.0237015 
0.0237045 
0.0237&7 
0.0237013 
0.0237028 
0.0237011 
0.0237020 
0.0237019 
0.0237024 

0.023+93 
0.0237018 
0.0237003 
0.0237012, 
0.0237018 
0.0237022 

Doubling 

-350. - 

The 
(bYS) 

-0.3 
-2.5 

1.3 
-3.1 

.6 

3.5 
3.9 

41. 
5.4 

-13. 
4.1 

-23. 
-220. 

11. 

-33. 
-13. 
41. 
%. 

-15. 
-50. 
-17. 

-30. 
-9. 
-63. 
-13. 

-54. 
43. 
-38. 
-88. 

R 
%V 

0.0336229 

0.033611g 
0.0336144 
0.0336123 
0.0336211 
0.03$278 
O.O3362%i 
0.0336267 
0.0336257 
0.033277 
0.0336277 
0.0335267 
0.0336262 
0.03$272 
0.0336286 
0.0336263 
0.0336256 
0.0335256 
O-0336253 
0.0336249 
0.0336243 
0.0336241 
0.0336246 
0.0335244 
0.0336232 
0.033.6224 
0.033h226 
0.0336230 
0.0336226 
0.0334226 

Doubling 
Time 

(W-d 
-1.5 
L.9 

-5.7 
2.0 

I*3 
1.8 
4.1 
6.7 
7.1 
9.2 

22. 

50. 
25. 
14. 

190. 
-92. 
-96. 
-57. 
-50. 
-33. 
-35. 
-9. 
-5% 
-Y. 
-23. 
-29. 
-39. 
-35. 
-39. 
-54. 



7.t;Lt: 11, .kittsncc chts fcr C+se B. x = 0.245; 
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cLr,~llEtive values. 

Real 
RLns l*lilli0n Doubling 
Ti-e i TUX78 .xA Time 

(&YS) 
0.2 

0.7 
1.5 

-0.3 
-0.4 
-1.3 
2.0 
2.8 

0.5 
1.1 
0.8 
0.6 

0.5 
0.4 
0.4 
0.4 

0.5 
1.0 
-1.5 

1.9 
1.9 
1.9 
2.2 
2.1 
1.9 
2.4 
1.9 
I*5 
1.5 
1.3 

2 6 
21 a 

3$ 10 
4 12 
4?' 14 

% i6 
5 18 
q 20 
7j 22 
8 24 
a+" 26 

9$ 
10 
102 
IL;: 
12 
12f 

1% 
14 
1q 

15+ 
i6 
.I&; 
17; 
ia 
1% 
19-: 
20 

28 

33 
2 
z++ 
36 
3s 
40 
42 
4 
46 
43 

50 
52 
54 
56 
58 
60 

0.0227520 
0.0227605 
0.022739 
0.0227293 
0.0227243 
0.0227275 
0.0227243 
0.02274Jl 
0.022773l 
0.0227619 
0.0227764 
0.0227892 
0.0228057 
0.0228304 
0.0228423 
0.0228507 
0.022a483 
0.0228320 
0.02282~ 
0.0228216 
0.0228252 
0.0228277 y 
0.0228280 
0.0228312 
0.0228347 
0.0228339 
0.02284ol 
0.0228499 
0.0228554 
0.02i86jo 

Doubling 
Y riY R 3Y 

0.0192872 0.1 0.029&09 

0.0193705 0.1 0.0299023 
0.0193918 0.1 0.0299149 
0.0193824 0.6 0.029%63 
0.0193w -0.3 0.02985?2 
0.0193089 -0.2 0.0298j74 
0.0193784 -3.2 0.0298298 
0.0192687 -0.2 0.0298235 
o.oLgz616 -0.3 0.0298k19 
0.0192598 -0.4 0.0298323 
0.0192621 -0.5 0.0298&7 
0.0192630 -0.7 0.0298550 
0.0192650 -1.0 0.0293687 
0.0192609 -1.0 0.029889 
0.0192612 -1.3 0.02985w 
0.0192610 -1.5 0.0299007 
0.0192603 -1.7 0.0298985 
0.0192633 -2.6 0.0298833 
0.0192628 -2.8 0.0298814 
0.0192602 -2.6 0.0298782 
0.0192582 -2.5 0.0298796 
0.0192593 -3.2 0.0298822 
0.0192599 -3.9 0.0298829 
0.0192j81 -3.6 0.0298841 
0.0192597 -4.9 0.02y8878 
0.0192654 ,-26. 0.0298908 
0.0192605 -6.7 0.0298924 
0.0192590 -5.9 0.0298990 
0.0192570 -5.1 0.02y9019 
0.0192~7. -5.4 0.0299076 

30 

Dcubling 
Tine 

(Ws) 
0.1 
0.1 

0.3 
-0.8 
-0.4 
-0.4 

-0.5 
3.6 
-2.5 
-1.5 

'37. 
3.1 
1.5 
1.0 

0.9 
1.0 

1.3 
2.2 
4.2 
7.2 
6.9 
5.7 
6.0 
6.0 
4.8 
4.2 
4.2 

3*3 
3.1 
2.7 
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Case A. 4x = Qy = 0.2451 Ad= 0.010 

R-1 
Rh3 
TilTI6 
(=w 

2 
4 
6 
a 

10 
12 
I4 
16 
la 
20 

Million 
Turns 

6 0.0335259 0.03%123 
12 0.0336252 0.03362B 
I8 0.0336260 0.0336277 
24 o .o336286 0.0336262 

30 o .0336261 0.0336263 

3s 0.0336251 0.0336253 
42 0.0336246 0.0336241 
49 0.0336220 0.0336232 
54 0.0336232 0.0336230 

.,60 0.0336237 0.0336229 

Single Double 
Pi-eclsion Precision 

x R 
6,V %V 

Doubline The 

Single 
Precision 
(bYS) 

0.01 
4.6 

31. 
6.7 

-60. 
-21, 
-23. 
-10. 
-24. 
-52. 

C.&e B. dx = 0.245; ): =, 0.120; Ad = 0.010 
2 6 0.0298768 0.029%9 
4 I2 0.0299107 0.0298374 
6 la 0.02987eI 0.0298419 
a 24 0.029881 I 0.0293550 

10 30 0.02987Ia 0.0298944 I 

-0.9 
0.7 

-0.5 
-1.5 
-1.2 

: 

Double 
Fi-eciaion 

(&YS) 
-5.7 
1.8 
7.1 

F* 
19. 
-67. 

-35. 
-3o* 
-3Y+ 
-53. 

0.3 
-0.4 
-2.5 

3.1 
0.9 
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Figure IA. Double Precision i?epeatsbility Zxperimcnt. $ = J = 0.&5 
Initial’ Conditions: Y.’ = Y’ = 0 LA= O.&O 
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X = Y = Av-, where A = 0.5, 1.0, 1.5, 2.0 sr,d xhere G-= 0.CS16,cFm . 
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F1.g.m 3. Conp=AriKm of x-, y- snd R-enittmce statistics for &se 4, 
3, = v) = 0.245; L\\j = 0.010 
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Fl&Lm 4. Cooprison of x-, y-, md %-enittsnce statistics for 36 
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Fipre 5. Average v=dues of RRIT from Table I. 
Case A. s*= sy = 0.245; L\L’ = 0.010 
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Figure 9. 
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Figure 9. Lines up to 13th order which cro6s the ame in tune space used by 

cm0 B. 9, = 0.2’45; dy = 0.120; AJ = 0.010 
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Fiye 10. s~jr-.c;lry of doubling times in Treble II. 42 
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Figure 11. Single Precisicn %i,est?t~iity.Ex~r:ment. Jx = -Jr = G.2ii5; nJ= 0.~10 
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Figure 12. Definition of terns used in the eclittance statistics. 
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